• 0 Posts
  • 39 Comments
Joined 1 year ago
cake
Cake day: June 25th, 2023

help-circle




  • Obviously the actual programs are trivial. The question is, how are the tools supposed to be used?

    So you say to use deno? Out of all the tutorials I found telling me what tools to use, that wasn’t one of them (I really thought this “typescript” package would be the thing I was supposed to use; I just checked again on a hot cache and it was 1.7 seconds real time, 4.5 seconds cpu time, only 2.9 seconds if I pin everything to a single core). And I swear I just saw this week, people saying “seriously, don’t use deno”. It also doesn’t seem to address the browser use case at all though.

    In other languages I know, I know how to write 4 files (the fib library and 3 frontends), and compile and/or execute them separately. I know how to shove all of them into a single blob with multiple entry points selected dynamically. I know how to shove just one frontend with the library into a single executable. I know how to separately compile the library and each frontend, producing 4 separate artifacts, with the library being dynamically replaceable. I even know how to leave them as loose files and execute them directly (barring things like C). I can choose between these things all in a single codebase, since there are no hard-coded project filenames.

    I learned these things because I knew I wanted the ability from previous languages I’d learned, and very quickly found how the new language’s tools supported that.

    I don’t have that for TS (JS itself seems to be fine, since I have yet to actually need all the polyfill spam). And every time I try to find an answer, I get something that contradicts everything I read before.

    That is why I say that TS is a hopelessly immature ecosystem.




  • Unfortunately both of those are used in common English or computer words. The only letter pairs not used are: bq, bx, cf, cj, dx, fq, fx, fz, hx, jb, jc, jf, jg, jq, jv, jx, jz, kq, kz, mx, px, qc, qd, qg, qh, qj, qk, ql, qm, qn, qp, qq, qr, qt, qv, qx, qy, qz, sx, tx, vb, vc, vf, vj, vm, vq, vw, vx, wq, wx, xj, zx.

    Personally I have mappings based on <CR>, and press it twice to get a real newline.



  • Speed is far from the only thing that matters in terminal emulators though. Correctness is critical.

    The only terminals in which I have any confidence of correctness are xterm and pangoterm. And I suppose technically the BEL-for-ST extension is incorrect even there, but we have to live with that and a workaround is available.

    A lot of terminal emulators end up hard-coding a handful of common sequences, and fail to correctly ignore sequences they don’t implement. And worse, many go on to implement sequences that cannot be correctly handled.

    One simple example that usually fails: \e!!F. More nasty, however, are the ones that ignore intermediaries and execute some unrelated command instead.

    I can’t be bothered to pick apart specific terminals anymore. Most don’t even know what an IR is.


  • I guess I forgot to mention the other implicit difference in concerns:

    When you are a game, you can reasonably assume: I have the user’s full focus and can take all the computing resources of their device, barring a few background apps.

    When you are an application, the user will almost always have several other applications running to a meaningful degree, and those eat into available resources (often in a difficult-to-measure way). Unfortunately this rarely gets tested.

    I’m not saying you can’t write an app using a game toolkit or vice versa, but you have to be aware of the differences and figure out how to configure it correctly for your use case.

    (though actually - some purely-turn-based games that do nothing until user enters input do just fine on app toolkits. But the existence of such games means that game toolkits almost always support some way of supporting the app paradigm. By contrast, app toolkits often lack ready support for continuous game paradigms … unless you use APIs designed for video playback, often involving creating a separate child “window”. Actual video playback is really hard; even the makers of dedicated video-playing programs mess it up.)



  • There’s tends to be one major difference between games and non-game applications, so toolkits designed for one are often quite unsuitable for the other.

    A game generally performs logic to paint the whole window, every frame, with at most some framerate-limiting in “paused” states. This burns power but is steady and often tries hard to reduce latency.

    An application generally tries to paint as little of the window as possible, as rarely as possible. Reducing video bandwidth means using a lot less power, but can involve variable loads so sometimes latency gets pushed down to “it would be nice”.

    Notably, the implications of the 4-way choice between {tearing, vsync, double-buffer, triple-buffer} looks very different between those two - and so does the question of “how do we use the GPU”?



  • Even logging can sometimes be enough to hide the heisgenbug.

    Logging to a file descriptor can sometimes be avoided by logging to memory (which for crash-safety includes the possibility of an mmap’ed file, since the kernel will just take care of them as long as the whole system doesn’t go down). But logging from every thread to a single section of memory can also be problematic (even without mutexes, atomics can be expensive and certainly have side-effects) - sometimes you need a separate per-thread log, and combine in the log-reader tool.





  • I haven’t managed to break into the JS-adjacent ecosystem, but tooling around Typescript is definitely a major part of the problem:

    • following a basic tutorial somehow ended up spending multiple seconds just to transpile and run “Hello, World!”.
    • there are at least 3 different ways of specifying the files and settings you want to use, and some of them will cause others to be ignored entirely, even though it looks like they should be used.
    • embracing duck typing means many common type errors simply cannot be caught. Also that means dynamic type checks are impossible, even though JS itself supports them (admittedly with oddities, e.g. with string vs String).
    • there are at least 3 incompatible ways to define and use a “module”, and it’s not clear what’s actually useful or intended to be used, or what the outputs are supposed to be for different environments.

    At this point I’m seriously considering writing my own sanelanguage-to-JS transpiler or using some other one (maybe Haxe? but I’m not sure its object model allows full performance tweaking), because I’ve written literally dozens of other languages without this kind of pain.

    WASM has its own problems (we shouldn’t be quick to call asm.js obsolete … also, C’s object model is not what people think it is) but that’s another story.


    At this point, I’d be happy with some basic code reuse. Have a “generalized fibonacci” module taking 3 inputs, and call it 3 ways: from a web browser on the client side, as a web browser request to server (which is running nodejs), or as a nodejs command-line program. Transpiling one of the callers should not force the others to be transpiled, but if multiple of the callers need to be transpiled at once, it should not typecheck the library internals multiple times. I should also be able to choose whether to produce a “dynamic” library (which can be recompiled later without recompiling the dependencies) or a “static” one (only output a single merged file), and whether to minify.

    I’m not sure the TS ecosystem is competent enough to deal with this.