Once something moves past the horizon any light that bounced off it would be pulled towards the center with it. Effectively making it non reflective. It’s possible all the energy from being crushed into a singularity causes a glow around it, like the disk around the outer area of a black hole.
If that’s the case, the glow itself would also be sucked immediately into the singularity. Maybe for the shortest of time, on the tiniest plank scale, the singularity produces light.
The only form of “light” (it isn’t really light but radiation, which I’d basically the same as light just that it has a different energy value etc) is the hawking radiation.
The accretion disk would emit light as particles were accelerated into the hole. Plus there would be hawking radiation from the evaporative process black holes have.
Light bouncing of an object is what creates reflection. The only way to see reflection past the horizon is to be closer to the singularity than the object you’re looking at.
The point being that the event horizon deals with the structure of spacetime, while reflectivity is a material property. An object doesn’t get painted with vantablack when it passes the event horizon.
Once something moves past the horizon any light that bounced off it would be pulled towards the center with it. Effectively making it non reflective. It’s possible all the energy from being crushed into a singularity causes a glow around it, like the disk around the outer area of a black hole.
If that’s the case, the glow itself would also be sucked immediately into the singularity. Maybe for the shortest of time, on the tiniest plank scale, the singularity produces light.
The only form of “light” (it isn’t really light but radiation, which I’d basically the same as light just that it has a different energy value etc) is the hawking radiation.
Excellent point, thank you.
The accretion disk would emit light as particles were accelerated into the hole. Plus there would be hawking radiation from the evaporative process black holes have.
The event horizon only obscures objects that are inside it, it has nothing to do with reflectivity of the object itself.
An observer situated between the singularity and an object within the event horizon could still intercept the light reflected from said object.
Light bouncing of an object is what creates reflection. The only way to see reflection past the horizon is to be closer to the singularity than the object you’re looking at.
That is what I said, yes.
The point being that the event horizon deals with the structure of spacetime, while reflectivity is a material property. An object doesn’t get painted with vantablack when it passes the event horizon.
I’m going to break this cycle and not repeat the same thing a fourth time.