When three massive objects meet in space, they influence each other through gravity in ways that evolve unpredictably. In a word: Chaos. That is the conventional understanding. Now, a researcher from the University of Copenhagen has discovered that such encounters often avoid chaos and instead follow regular patterns, where one of the objects is quickly expelled from the system. This new insight may prove vital for our understanding of gravitational waves and many other aspects of the universe.
I thought this type of thing was well known in chaotic dynamics. There must be a new discovery here, but the phys.org article is not much help in explaining what it is.
The full paper is here: https://www.aanda.org/articles/aa/full_html/2024/09/aa49862-24/aa49862-24.html
From what I gather, they’re looking at the trajectories of the first object ejected from the system over all of the simulations, and they’re finding that:
https://www.aanda.org/articles/aa/full_html/2024/09/aa49862-24/F3.html
All of those colors on those images are dots, each one representing the outcome of a simulation. The large single-colored areas shouldn’t exist if 3BP were truly chaotic and unpredictable. Furthermore, you can see some “finer structures that look like narrow stripes.”
Thanks yes I might look at the paper. Having a mixture of stable and chaotic regions is a well known phenomenon though. See for example Wada basins.
My dad used a Wada basin to shave in the morning when he was in Vietnam.
And the yellow? Close miss?