the methods required to maintain qubits are exotic.
this site mentions the refrigeration equipment youre referencing i believe https://www.pnnl.gov/news-media/new-superconducting-qubit-testbed-benefits-quantum-information-science-development
It’s not much to look at. Its case—the size of a pack of chewing gum–is connected to wires that transmit signals to a nearby panel of custom radiofrequency receivers. But most important, it’s nestled within a shiny gold cocoon called a dilution refrigerator and shielded from stray electrical signals. When the refrigerator is running, it is among the coldest places on Earth, so very close to absolute zero, less than 6 millikelvin (about −460 degrees F).
This is the right answer. It’s a big cryogenic refrigerator called a Dilution Refrigerator. It’s fancy stuff. Needs Helium-4, which is more common, and Helium-3, which mostly comes from nuclear production.
Because that’s the cooling system required to run the thing. It requires more toxic coolant, that will eventually end up in the ocean, than several hundred supercomputer megaclusters and sucks more power than a thousand suburbs.
I believe you may have misread your own source.
For example, the world’s fastest supercomputer, Frontier, draws 8 megawatts when it idles — a quantity that could simultaneously power thousands of homes
If this was the basis for your saying this…
several hundred supercomputer megaclusters and sucks more power than a thousand suburbs.
… then you misread AND misstated.
Misread: this “thousands of homes” energy use was in reference to Frontier, which is not a quantum computer but based on more conventional architecture, the kind the article goes on to say might eventually be improved upon by quantum computing. Eg:
Consequently, experts are looking to new strategies that can rein in energy use while continuing to improve computing performance. One proposed solution: quantum computing.
Misstated: “thousands of homes” != “thousands of suburbs.”
A suburb is not a home but a a collection of homes, a region of a city even. See definition:
an outlying part of a city or town. b. : a smaller community adjacent to or within commuting distance of a city. c. suburbs plural : the residential area on the outskirts of a city or large town.
So in your zeal to make your point you demonized quantum computers, which could be a solution to the problem you’re ostensibly so concerned about, and in the process you misstated a metric by at least one order of magnitude.
So yeah… I don’t know what to tell you. You really messed up here. Your problem is with LLMs and big compute, not necessarily quantum computers.
Good stuff! I rescind my comment and defer to all your corrections.